
International Journal of Computational Engineering Research||Vol, 03||Issue, 9||

||Issn 2250-3005 || ||September||2013|| Page 29

Agile Methodologies and Its Processes

1,
Akanksha

, 2,
Akansha Rakheja

, 3,
Latika Kapur ,

4,
Kanika Ahuja

1,2,3,,Information Tech IT)Dronacharya College of Engineering, Gurgaon

I. INTRODUCTION
 Agile software development (also called “agile”) isn‟t a set of tools or a single methodology, but a

philosophy put to paper in 2001 with an initial 17 signatories. Agile was a significant departure from the

heavyweight document –driven software development methodologies such as waterfall. Plan driven methods are
those that begin with the solicitation and documentation of a set of requirements that is as complete as possible.

Based on these requirements, one can then formulate a plan of development. Usually, the more complete the

requirement the better the plan. Some examples of plan driven methods are various waterfall approaches. An

underlying assumption in plan driven processes is that the requirements are relatively static. On the other hand,

iterative methods such as spiral-model based approaches described in recently agile approaches count on change

and recognize that only constant is changed. With the passage of time, the software industry, software

technology and customer expectations were moving very quickly and the customers were becoming increasingly

less able to fully state their need up front. As a result, agile methodologies and practises emerged as an explicit

attempt to formally embrace higher rates of requirements change. Agile methods are a subset of iterative and

evolutionary methods and are based on iterative enhancement and opportunistic development process. In all

iterative products, each iteration is a self-contained, mini-project with activities that span requirements analysis,
design, implementation, and test. Each iteration leads to an iteration release (which may be only an internal

release) that integrates all software across the team and is a growing and evolving subset of the final system.

The purpose of having short iterations is so that feedback from iterations N and earlier, and any other new

information, can lead to refinement and requirements adaptation for iteration N + 1.The customer adaptively

specifies his or her requirements for the next release based on observation of the evolving product, rather than

speculation at the start of the project . There is quantitative evidence that frequent deadlines reduce the variance

of a software process and, thus, may increase its predictability and efficiency. The pre-determined iteration

length serves as a timebox for the team. Scope is chosen for each iteration to fill the iteration length. Rather than

increase the iteration length to fit the chosen scope, the scope is reduced to fit the iteration length. A key

difference between agile methods and past iterative methods is the length of each iteration. In the past, iterations

might have been three or six months long. With agile methods, iteration lengths vary between one to four weeks,

and intentionally do not exceed 30 days. Research has shown that shorter iterations have lower complexity and
risk, better feedback, and higher productivity and success rates.

 Agile process is an iterative approach in which customer satisfaction is at highest priority as the

customer has direct involvement in evaluating the software. The agile process follows the software development

life cycle which includes requirements gathering, analysis, design, coding, testing and delivers partially

implemented software and waits for the customer feedback. In the whole process, customer satisfaction is at

highest priority with faster development time. The following figure depicts the software development life cycle

of Agile Process.

ABSTRACT:
“Agile”-denotes the quality of being agile. This paper deals with the concept of agile methodology. It

will include some of the software development process models used. In particular the aim of the agile

process is to satisfy the customer through early and continuous delivery of valuable software. This paper

compares the agile processes with other software development life cycle models. Advantages and

disadvantages of the agile processes are also included in this paper.

Keywords: Extreme Programming (XP), Scrum, Software Development Life Cycle (SDLC)

Agile Methodologies and Its…

||Issn 2250-3005 || ||September||2013|| Page 30

II. CHARACTERISTICS OF AGILE PROCESS
 The core agile delivery principle is that although agile methods differ somewhat in their practices, all

of them advocate these core principles--iterative and incremental delivery, collaboration and continuous

improvement and here are top reasons to adopt agile methodology.

 Iterative and incremental delivery: Project delivery is divided into small functional releases or increments to

manage risk and to get early feedback from customers and end users. These small releases are delivered on

a schedule using iterations that typically last between one and four weeks each. Plans, requirements, design,

code and tests are created initially and updated incrementally as needed to adapt to project changes.

 Collaboration: All core project team members including an on-site customer are co-located in a shared,

open area to facilitate face-to-communication and conduct interactions. Team members self-organize by

continuously completing tasks collaboratively without top-down management control.

 Continuous Improvement: Practices that enable delivery process inspection and adaptation are integrated

into agile methods. Project Reflections are meetings conducted while the project is underway to facilitate

regular reflection on its successes and failures, and any of the tools and techniques applied.

 Modularity: Agile process decomposes the complete system into manageable pieces called modules.

Modularity plays a major role in software development processes.

 Convergent: All the risks associated with each increment are convergent in agile process by using iterative

and incremental approach.

 Adaptive: Due to the iterative nature of agile process new risks may occurs. The adaptive characteristic of

agile process allows adapting the processes to attack the new risks and allows changes in the real time

requirements.

 Time Boxing: As agile process is iterative in nature, it requires the time limits on each module with

respective cycle.

 Parsimony: In agile processes parsimony is required to mitigate risks and achieve the goals by minimal

number of modules.

Agile Methodologies and Its…

||Issn 2250-3005 || ||September||2013|| Page 31

III. AGILE METHODOLOGIES
 This section provides a brief introduction to three agile methodologies. The three were chosen to

demonstrate the range of applicability and specification of the agile methodologies. For each methodology we

provide an overview of its process.

3.1. Extreme Programming (XP)
 Extreme Programming (XP) originators aimed at developing a methodology suitable for “object-

oriented projects using teams of a dozen or fewer programmers in one location.” The methodology is based

upon five underlying values:

a. Communication: XP has a culture of oral communication and its practices are designed to encourage

interaction.

b. Simplicity: Design the simplest product that meets the customer‟s needs. An important aspect of the value

is to only design and code what is in the current requirements rather than to anticipate and plan for unstated

requirements.

c. Feedback: The development team obtains feedback from the customers at the end of each iteration and

external release. This feedback drives the next iteration.
d. Courage: The other three values allow the team to have courage in its actions and decision making.

e. Respect: Team members need to care about each other and about the project

XP is the most successful method of developing agile software because of its focus on customer satisfaction. XP

requires maximum customer interaction to develop the software. It divides the entire software development life

cycle into several number of short development cycles. It welcomes and incorporates changes or requirements

from the customers at any phase of the development life cycle.

The Extreme Programming software development process starts with planning, and all iterations consist of four

basic phases in its life cycle: designing, coding, testing, and listening. The overriding values that drives the XP

life cycle are continual communication with the customer and amongst the team, simplicity by harping on the
minimalist solution, frequent feedback through unit and acceptance testing, and the courage to take on problems

proactively and integrate testing and changes in the development phase.

A. Planning:

 The first phase of Extreme Programming life cycle is planning, where customers or users meet with the

development team to create „user stories‟ or requirements. The development team converts user stories into

iterations that cover a small part of the functionality or features required. A combination of iterations provides

the customer with the final fully functional product. The programming team prepares the plan, time, and costs of

carrying out the iterations, and individual developers sign up for iterations. One planning approach is the critical

path method, grouping iterations essential for project progress in a linear fashion, and arranging for completion

of other iterations parallel to the critical path.

B. Designing

An iteration of XP programming starts with designing. Thrust on simplicity by expressing a thing only once and

not adding functionality in anticipation. It uses systems metaphor or standards on names, class names and

methods, and agreeing on uniform styles and formats to ensure compatibility among the work of different team

members. It uses Software Class Responsibilities and Collaboration (CRC) Cards that allow for a departure

from the traditional procedural mindset and make possible object oriented technology. Such cards allow all

members of the project team to contribute ideas, and collate the best ideas into the design. It creates spike

solutions or simple programs that explore potential solutions for a specific problem, ignoring all other concerns,

to mitigate risk.

C. Coding
 Coding constitutes the most important phase in the Extreme Programming life cycle. XP programming

gives priority to the actual coding over all other tasks such as documentation to ensure that the customer

receives something substantial in value at the end of the day.

Standards related to coding include:

 Developing the code based on the agreed metaphors and standards, and adopting a policy of collective code

ownership.

 Pair programming or developing code by two programmers working together on a single machine, aimed at

producing higher quality code at the same or less cost.

Agile Methodologies and Its…

||Issn 2250-3005 || ||September||2013|| Page 32

 Strict adherence to 40-hour workweeks with no overtime. This ensures the developers work in the peak of

their mental and physical faculties.

 Frequent integration of the code to the dedicated repository, with only one pair integrating at a time to

prevent conflicts, and optimization at the end.

D. Testing

 Extreme program integrates testing with the development phase rather than at the end of the
development phase. All codes have unit tests to eliminate bugs, and the code passes all such unit tests before

release. Another key test is customer acceptance tests, based on the customer specifications. Acceptance test run

at the completion of the coding, and the developers provide the customer with the results of the acceptance tests

along with demonstrations.

E. Listening

 The basis of extreme programming is a continuous mechanism of customer involvement through

feedback during the development phase. Apart from the customer, the developer also receives feedback from the

project manager.The basis of feedback is the customer acceptance tests. Each feedback of the customer that

specifies revised requirement becomes the basis of a new design, and the process of design-coding-tests-

listening repeats itself. If the customer remains satisfied with the test results the iteration ends there, and the
design for the new iteration starts, which again follows the design-coding-testing-listening cycle.

3.2. SCRUM

 Scrum is another popular method of agile development through which productivity becomes very high.

It is basically based on incremental software development process. In scrum method the entire development

cycle is divided into a series of iteration where each iteration is called as a sprint. Maximum duration of a sprint

is 30 days. The main idea of Scrum is that systems development involves several environmental and technical

variables (eg. requirements, time frames, technology and resources) that are likely to change during the process.

This makes the development process unpredictable and complex, requiring flexibility of the systems

development process for it to be able to respond to the changes. As a result of the development process, a

system is produced which is useful when delivered.

Agile Methodologies and Its…

||Issn 2250-3005 || ||September||2013|| Page 33

The method starts with collecting user requirements but it is not expected that all the requirements should come

out from the user at the beginning. User can change their mind at any time during development; they can add

new features, remove or update some existing features. Next phase is to prioritize the requirements and the list is

known as product backlog. A proper planning for sprint should be done i.e. how many sprints are needed to

develop the software, duration of the sprint, and what are the requirements from the product backlog should be
implemented in each sprint. This particular list is known as sprint backlog. During each sprint one sprint

meeting is held every day to take the feedback how much work has been done. After each sprint review is taken

to determine whether all the requirements for that particular sprint have already been implemented or not and to

decide the requirements should be implemented at the next sprint. After each sprint we get a working increment

of the software. A sprint is the basic unit of development in Scrum. The sprint is a "time boxed" effort, i.e. it is

restricted to a specific duration. The duration is fixed in advance for each sprint and is normally between one

week and one month.

IV. COMPARISON

4.1. Between various process models:

Agile Methodologies and Its…

||Issn 2250-3005 || ||September||2013|| Page 34

4.2. Between agile methologies:

V. ADVANTAGES

 Agile methodology has an adaptive team which is able to respond to the changing requirements.Customer

satisfaction by rapid, continuous delivery of useful software.

 People and interactions are emphasized rather than process and tools. Customers, developers and testers

constantly interact with each other.

 Working software is delivered frequently (weeks rather than months).

 Face to face communication and continuous inputs from customer representative leaves no space for

guesswork.

 Continuous attention to technical excellence and good design

 A reduced budget

 Less defects in the final product

 Become responsive by supporting scope adjustments every iteration

 Decrease risk by always having working software

VI. DISADVANTAGES
 In case of some software deliverables, especially the large ones, it is difficult to assess the effort required at

the beginning of the software development life cycle.

 There is lack of emphasis on necessary designing and documentation.

 The project can easily get taken off track if the customer representative is not clear what final outcome that

they want.

 When change comes so quickly, it is difficult to avoid resistance from stakeholders and complications to
end user training.

 Only senior programmers are capable of taking the kind of decisions required during the development

process. Hence it has no place for newbie programmers, unless combined with experienced resources.

 Because agile methods are not process-oriented and require quick response to change, a lack of

documentation is often a primary characteristic

 Agile is not a silver bullet – Agile can be over-hyped, thus leading to unrealistic expectations

VII. CONCLUSION
 In this paper we have discussed the agile development life cycle models, characteristics of agile

process, methologies of agile process, advantages and disadvantages. In the comparative study of agile software

development with other software development models we conclude that agile project is much better than other

Agile Methodologies and Its…

||Issn 2250-3005 || ||September||2013|| Page 35

software development process in terms of productivity, performance, faster time cycles, risk analysis. Agile

processes are implemented in important applications such as web based, testing tools, etc.

REFERENCES
[1] Sheetal Sharma et al. / International Journal on Computer Science and Engineering (IJCSE)

 ISSN , Agile Processes and Methodologies: A Conceptual Study.

[2] [Aoyama 1998] Mikio Aoyama, "Agile Software Process and Its Experience", Proceedings of the 1998 International Conference on

Software Engineering,

[3] [Gilb 1988] Tom Gilb. Principles of Software Engineering Management, Addison Wesley.

[4] Williams, L., "Agile Software Development Methodologies and Practices ", in Advances in Computers, Volume 80,, 2010

[5] Layman, L., Williams, L., Cunningham, L., Exploring Extreme Programming in Context: An Industrial Case Study, Agile

Development Conference 2004

[6] http://en.wikipedia.org/wiki/Agile_software_development

http://collaboration.csc.ncsu.edu/laurie/Papers/ADC.pdf
http://en.wikipedia.org/wiki/Agile_software_development

